为什么黄桃会被做成罐头?******
最近,黄桃罐头可谓是一罐难求。不少网友表示:“小时候每次发烧感冒,妈妈都会给我买黄桃罐头冰镇吃”“东北小孩,哪个童年时代,生病了不得吃一罐罐头?”
那么,你知道好端端的黄桃为什么要被做成罐头?为什么黄桃罐头可以在东北“封神”吗?
黄桃有哪些特点?
黄桃不易保存。黄桃是最易腐烂变质的水果之一,采摘以后,通常只能保存四五天。
黄桃自身特性决定它适合做罐头。黄桃具备三个特点:肉黄、黏核、不溶质,反而都是做罐头的优势。黏核的黄桃靠近果核的果肉不会被染成红色,做成罐头颜色更漂亮;黄桃果肉坚硬,纤维少,经过高温蒸煮后果肉依然紧实不散,汤汁金黄清亮,做出的罐头颜值高、卖相好。
图源:摄图网
黄桃加工成罐头可以有效改良黄桃的口感。黄桃本身偏酸,加上白糖蒸煮过后,酸甜可口,口感更佳,满足大众挑剔的口味。
罐头类的食品防腐剂很多吗?
有些人很喜欢吃水果罐头,却不太敢吃,觉得罐头保质期很长,肯定添加了许多防腐剂,吃了可能会对身体不好。但事实却是,水果罐头一般没有防腐剂,因为不需要。
新鲜水果变坏是因为受到了有害微生物的污染,微生物靠着水果中的营养进一步繁殖,进一步加剧水果的腐烂变质。 而罐头是新鲜水果经过清洗、挑选、去核等工序后进一步加工的,会经过高温杀菌处理。先在85℃条件下,恒温杀菌10分钟,然后再在92℃条件下继续杀菌10~12分钟,最后再把氧气排干净,形成负压,密封保存起来。有的是在121℃条件下直接灭菌20分钟以上。
水果罐头的工艺流程 图源:参考文献
整个流程下来不仅已经不含有致病性微生物,而且也不含有在通常温度下可繁殖的非致病性微生物。外面的也进不去,所以黄桃罐头就不需要防腐剂了。
其他罐头基本也不含防腐剂。目前我国的罐头生产工艺,大多数罐头生产厂家都靠灌装密封和长时间超高温加热来进行灭菌处理,这样处理以后,再顽强的细菌微生物也活不了啦,也不需要防腐剂帮忙!因此,你只要注意查看罐头的配料表就会发现,市面上的罐头基本都不含防腐剂。偷偷说一句,防腐剂也要钱啊!
黄桃罐头营养价值高吗?
有人觉得黄桃罐头没有营养,不如直接吃黄桃。这样的想法可就错了。
罐头里的水果都很新鲜的,很多都是在刚摘下来不久的时候就被做成罐头了。所以,黄桃罐头的桃肉是很新鲜的!
罐头里通常还会额外添加维生素C抗氧化、延长保质期,所以维生素C含量可能比新鲜黄桃更有优势。黄桃最值得一提的营养是类胡萝卜素,无论是鲜果还是罐头,二者含量差异都不大。它可以在体内转化为维生素A,对眼睛的健康有益。
图源:摄图网
虽然罐头一般都经过了高温灭菌处理,一些维生素C这样不耐热的营养素会被破坏,但是还有一些耐热的维生素和营养素都还是被完完整整地保存下来了。所以,只能说有些罐头的营养比新鲜水果蔬菜略微少一些,但绝对不是毫无营养!
不过在出现咳嗽症状时,建议还是要少吃。山西医科大学第二医院呼吸与危重症医学科副主任高晓玲提醒,食用黄桃罐头这样的甜食会加重咳嗽。一方面是因为甜食可直接刺激咽喉部位的神经,反射性地引起咳嗽,使咳嗽加重;另一方面是因为糖会刺激咽喉黏膜,导致咽喉部分泌物增加,加之糖的黏性较大,使分泌物更加黏稠,从而导致痰液不易咳出,并加重咳嗽。还有咳嗽如果是呼吸道感染引起的症状,甜食中的糖分会导致细菌大量滋生繁殖,所以会加重咳嗽。
来源:人民日报健康客户端、中国新闻网、生命时报、科普中国、健康热点科普号、武汉市场监管
参考文献:江舰,尤逢惠,朱莉昵. 黄桃罐头加工工艺技术研究[J]. 农产品加工,2017,(09):32-34.
整理:刘雪洁 蔡琳
具超长可重复相干时间的通量量子比特问世******
以色列巴伊兰大学物理系暨量子纠缠科学与技术中心迈克尔·斯特恩及其同事基于一种称为超导通量量子比特的不同类型的电路构建超导处理器。在发表于《物理评论应用》上的一篇论文中,他们提出了一种控制和制造通量量子比特的新方法,该方法具有前所未有的可重复长相干时间。
通量量子比特是一种微米大小的超导环路,其中电流可顺时针或逆时针流动,也可双向量子叠加。与传输子(transmon)量子比特相反,这些通量量子比特是高度非线性的对象,因此可在非常短的时间内以高保真度(即无错误地进行计算的能力)进行操作。
超导传输子量子比特被认为是可扩展量子处理器的基本构建块。多年来,传输子量子比特的保真度不断提高,IBM、亚马逊和谷歌等科技巨头在最近的竞争中相继展示了量子优越性。
但随着处理器变得越来越大,如IBM刚刚宣布推出一款具400多个传输子量子比特的处理器,此类系统的保真度和可扩展性要求变得越来越严格。特别是,传输子量子比特是弱非线性对象,这本质上限制了它们的保真度,并且由于频率拥挤的问题带来了对可扩展性的担忧。
而通量量子比特的主要缺点是,它们特别难以控制和制造,这导致了相当大的不可重复性,之前它们在工业中的使用仅限于量子退火优化过程。
在新研究中,研究团队与澳大利亚墨尔本大学合作,使用新颖的制造技术和最先进的设备,成功地克服了这一范式的重大障碍。
斯特恩表示,他们在这些量子比特的控制和可重复性方面取得了显著改善。这种可重复性使他们能够分析阻碍相干时间的因素并系统地消除它们。这项工作为量子混合电路和量子计算领域的许多潜在应用铺平了道路。
这项研究得到了以色列科学基金会的支持。(记者张梦然)